↓
 

ISSN 1993-3916

Arid Ecosystems

The “Arid Ecosystems” journal was organized by the decision of General Biology Division of the Russian Academy of Sciences.

  •  Home
  • Preprint
  • Contacts
  • Open Access 
  • Archive
    • Issues 1990s
      • Issues for 1995
      • Issues for 1996
      • Issues for 1997
      • Issues for 1998
      • Issues for 1999
      • Issues for 2000
    • Issues 2000s
      • Issues for 2001
      • Issues for 2002
      • Issues for 2003
      • Issues for 2004
      • Issues for 2005
      • Issues for 2006
      • Issues for 2007
      • Issues for 2008
      • Issues for 2009
      • Issues for 2010
    • Issues 2010s
      • Issues for 2011
      • Issues for 2012
      • Issues for 2013
      • Issues for 2014
      • Issues for 2015
      • Issues for 2016
      • Issues for 2017
      • Issues for 2018
      • Issues for 2019
    • Issues 2020s
      • Issues for 2020
      • Issues for 2021
      • Issues for 2022
      • Issues for 2023
      • Issues for 2024

Архив метки: SuperView-1

THE USE OF MULTI-TEMPORAL HIGH-RESOLUTION SATELLITE IMAGES TO SOIL SALINITY ASSESSMENT IN THE SOLONETZIC COMPLEX (REPUBLIC OF KALMYKIA)

Arid Ecosystems

UDC 631.4

Prokopyeva K.O. THE USE OF MULTI-TEMPORAL HIGH-RESOLUTION SATELLITE IMAGES TO SOIL SALINITY ASSESSMENT IN THE SOLONETZIC COMPLEX (REPUBLIC OF KALMYKIA) // Arid Ecosystems. 2022. Vol. 28. № 4 (93). P. 61-74. | PDF

Remote assessment of soil salinity of natural solonetzic complexes, which are characterized by subsurface soil salinity, is a challenging task. Nevertheless, research in this area is promising, as salinity is a striking limiting factor affecting vegetation growth, and thus manifests itself on the spectral characteristics of the land surface. In this paper, an analysis of multi-temporal high-resolution satellite images compared with detailed ground data on soil salinity was carried out using the principal component method and multiple linear regression. Images from QuickBird (2007) and SuperView-1 (2021) satellites were used as remote sensing data with a spatial resolution of 2 m. Salinity was estimated by specific electrical conductivity (EC) in a water suspension of 1:5. Ground surveys were carried out in 2011 and 2021. It was found out that there were no significant changes in soil salinity in the key area during the 10-year period, but there were changes in vegetation conditions, which are reflected in the NDVI vegetation index maps. The principal components were calculated from multi-temporal high-resolution satellite images and it was concluded that the first three components explain almost 97% of the total image variability. Models based on multiple linear regression analysis describe well the soil salinity (R2 of the model is 0.68, 0.77, 0.83 for layers 0-30, 0-50, 0-100 cm, respectively). The constructed models based on remote sensing data have shown good agreement when tested with the control sample (R2 between predicted and measured EC values is 0.70, 0.87, 0.83 for layers 0-30, 0-50, 0-100 cm, respectively). The proposed models will be useful for estimation of salinity of soils of solonetzic complex of dry steppe from high resolution satellite images.

Keywords: QuickBird, SuperView-1, assessment of soil salinity, solonetzic complexes, Principal Components Analysis (PCA), NDVI, Caspian Lowland.

Acknowledgement. The author expresses gratitude for the help in the work of M.V. Konyushkova, I.P. Minkeev, A.F. Novikova, M.B. Shadrina, S.S. Ulanova, I.N. Semenkov, A.A. Kontoboitseva, Isinufen, N.M. Tserenov, U.Y. Ulumdjiev.

DOI: 10.24412/1993-3916-2022-4-61-74

EDN: PTOYDP

About the Journal

  • General Information
  • Open Access 
  • Preprint
  • Topics of the journal
  • Editoral Board
  • Editorial Policy
  • Editorial Ethics

Articles Supplying

  • Rules of Manuscripts Supplying
  • Articles Design
  • Article Structure
  • Guidens for Writing an Article
  • Articles Translation

Review of manuscripts

  • Review of manuscripts

Archive

  • 1990s editions
  • 2000s editions
  • 2010s editions
  • 2020s editions
    • Issues for 2020
    • Issues for 2021
    • Issues for 2022
    • Issues for 2023
    • Issues for 2024
  • Events

_______________________

©2025 - Arid Ecosystems - Weaver Xtreme Theme
↑